\(\int \frac {\cot (c+d x) (B \tan (c+d x)+C \tan ^2(c+d x))}{(a+b \tan (c+d x))^2} \, dx\) [35]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 111 \[ \int \frac {\cot (c+d x) \left (B \tan (c+d x)+C \tan ^2(c+d x)\right )}{(a+b \tan (c+d x))^2} \, dx=\frac {\left (a^2 B-b^2 B+2 a b C\right ) x}{\left (a^2+b^2\right )^2}+\frac {\left (2 a b B-a^2 C+b^2 C\right ) \log (a \cos (c+d x)+b \sin (c+d x))}{\left (a^2+b^2\right )^2 d}-\frac {b B-a C}{\left (a^2+b^2\right ) d (a+b \tan (c+d x))} \]

[Out]

(B*a^2-B*b^2+2*C*a*b)*x/(a^2+b^2)^2+(2*B*a*b-C*a^2+C*b^2)*ln(a*cos(d*x+c)+b*sin(d*x+c))/(a^2+b^2)^2/d+(-B*b+C*
a)/(a^2+b^2)/d/(a+b*tan(d*x+c))

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {3713, 3610, 3612, 3611} \[ \int \frac {\cot (c+d x) \left (B \tan (c+d x)+C \tan ^2(c+d x)\right )}{(a+b \tan (c+d x))^2} \, dx=-\frac {b B-a C}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}+\frac {\left (a^2 (-C)+2 a b B+b^2 C\right ) \log (a \cos (c+d x)+b \sin (c+d x))}{d \left (a^2+b^2\right )^2}+\frac {x \left (a^2 B+2 a b C-b^2 B\right )}{\left (a^2+b^2\right )^2} \]

[In]

Int[(Cot[c + d*x]*(B*Tan[c + d*x] + C*Tan[c + d*x]^2))/(a + b*Tan[c + d*x])^2,x]

[Out]

((a^2*B - b^2*B + 2*a*b*C)*x)/(a^2 + b^2)^2 + ((2*a*b*B - a^2*C + b^2*C)*Log[a*Cos[c + d*x] + b*Sin[c + d*x]])
/((a^2 + b^2)^2*d) - (b*B - a*C)/((a^2 + b^2)*d*(a + b*Tan[c + d*x]))

Rule 3610

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b
*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3611

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(c/(b*f))
*Log[RemoveContent[a*Cos[e + f*x] + b*Sin[e + f*x], x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d,
0] && NeQ[a^2 + b^2, 0] && EqQ[a*c + b*d, 0]

Rule 3612

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(a*c +
b*d)*(x/(a^2 + b^2)), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3713

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Tan[e + f*x])
^(m + 1)*(c + d*Tan[e + f*x])^n*(b*B - a*C + b*C*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {B+C \tan (c+d x)}{(a+b \tan (c+d x))^2} \, dx \\ & = -\frac {b B-a C}{\left (a^2+b^2\right ) d (a+b \tan (c+d x))}+\frac {\int \frac {a B+b C-(b B-a C) \tan (c+d x)}{a+b \tan (c+d x)} \, dx}{a^2+b^2} \\ & = \frac {\left (a^2 B-b^2 B+2 a b C\right ) x}{\left (a^2+b^2\right )^2}-\frac {b B-a C}{\left (a^2+b^2\right ) d (a+b \tan (c+d x))}+\frac {\left (2 a b B-a^2 C+b^2 C\right ) \int \frac {b-a \tan (c+d x)}{a+b \tan (c+d x)} \, dx}{\left (a^2+b^2\right )^2} \\ & = \frac {\left (a^2 B-b^2 B+2 a b C\right ) x}{\left (a^2+b^2\right )^2}+\frac {\left (2 a b B-a^2 C+b^2 C\right ) \log (a \cos (c+d x)+b \sin (c+d x))}{\left (a^2+b^2\right )^2 d}-\frac {b B-a C}{\left (a^2+b^2\right ) d (a+b \tan (c+d x))} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.45 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.71 \[ \int \frac {\cot (c+d x) \left (B \tan (c+d x)+C \tan ^2(c+d x)\right )}{(a+b \tan (c+d x))^2} \, dx=\frac {\frac {C ((-i a-b) \log (i-\tan (c+d x))+i (a+i b) \log (i+\tan (c+d x))+2 b \log (a+b \tan (c+d x)))}{a^2+b^2}-(b B-a C) \left (\frac {i \log (i-\tan (c+d x))}{(a+i b)^2}-\frac {i \log (i+\tan (c+d x))}{(a-i b)^2}+\frac {2 b \left (-2 a \log (a+b \tan (c+d x))+\frac {a^2+b^2}{a+b \tan (c+d x)}\right )}{\left (a^2+b^2\right )^2}\right )}{2 b d} \]

[In]

Integrate[(Cot[c + d*x]*(B*Tan[c + d*x] + C*Tan[c + d*x]^2))/(a + b*Tan[c + d*x])^2,x]

[Out]

((C*(((-I)*a - b)*Log[I - Tan[c + d*x]] + I*(a + I*b)*Log[I + Tan[c + d*x]] + 2*b*Log[a + b*Tan[c + d*x]]))/(a
^2 + b^2) - (b*B - a*C)*((I*Log[I - Tan[c + d*x]])/(a + I*b)^2 - (I*Log[I + Tan[c + d*x]])/(a - I*b)^2 + (2*b*
(-2*a*Log[a + b*Tan[c + d*x]] + (a^2 + b^2)/(a + b*Tan[c + d*x])))/(a^2 + b^2)^2))/(2*b*d)

Maple [A] (verified)

Time = 0.29 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.27

method result size
derivativedivides \(\frac {\frac {\frac {\left (-2 B a b +C \,a^{2}-C \,b^{2}\right ) \ln \left (1+\tan \left (d x +c \right )^{2}\right )}{2}+\left (B \,a^{2}-B \,b^{2}+2 C a b \right ) \arctan \left (\tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{2}}-\frac {B b -C a}{\left (a^{2}+b^{2}\right ) \left (a +b \tan \left (d x +c \right )\right )}+\frac {\left (2 B a b -C \,a^{2}+C \,b^{2}\right ) \ln \left (a +b \tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{2}}}{d}\) \(141\)
default \(\frac {\frac {\frac {\left (-2 B a b +C \,a^{2}-C \,b^{2}\right ) \ln \left (1+\tan \left (d x +c \right )^{2}\right )}{2}+\left (B \,a^{2}-B \,b^{2}+2 C a b \right ) \arctan \left (\tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{2}}-\frac {B b -C a}{\left (a^{2}+b^{2}\right ) \left (a +b \tan \left (d x +c \right )\right )}+\frac {\left (2 B a b -C \,a^{2}+C \,b^{2}\right ) \ln \left (a +b \tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{2}}}{d}\) \(141\)
parallelrisch \(\frac {2 a \left (B a b -\frac {1}{2} C \,a^{2}+\frac {1}{2} C \,b^{2}\right ) \left (a +b \tan \left (d x +c \right )\right ) \ln \left (a +b \tan \left (d x +c \right )\right )-a \left (B a b -\frac {1}{2} C \,a^{2}+\frac {1}{2} C \,b^{2}\right ) \left (a +b \tan \left (d x +c \right )\right ) \ln \left (\sec \left (d x +c \right )^{2}\right )+b \left (\left (B d x -C \right ) a^{3}+b \left (2 C d x +B \right ) a^{2}-b^{2} \left (B d x +C \right ) a +B \,b^{3}\right ) \tan \left (d x +c \right )+a^{2} d x \left (B \,a^{2}-B \,b^{2}+2 C a b \right )}{\left (a +b \tan \left (d x +c \right )\right ) d a \left (a^{2}+b^{2}\right )^{2}}\) \(183\)
norman \(\frac {\frac {a \left (B \,a^{2}-B \,b^{2}+2 C a b \right ) x}{a^{4}+2 a^{2} b^{2}+b^{4}}+\frac {b \left (B \,a^{2}-B \,b^{2}+2 C a b \right ) x \tan \left (d x +c \right )}{a^{4}+2 a^{2} b^{2}+b^{4}}+\frac {\left (B b -C a \right ) b \tan \left (d x +c \right )}{a d \left (a^{2}+b^{2}\right )}}{a +b \tan \left (d x +c \right )}+\frac {\left (2 B a b -C \,a^{2}+C \,b^{2}\right ) \ln \left (a +b \tan \left (d x +c \right )\right )}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}-\frac {\left (2 B a b -C \,a^{2}+C \,b^{2}\right ) \ln \left (1+\tan \left (d x +c \right )^{2}\right )}{2 d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}\) \(226\)
risch \(-\frac {x B}{2 i b a -a^{2}+b^{2}}+\frac {i x C}{2 i b a -a^{2}+b^{2}}-\frac {4 i a b B x}{a^{4}+2 a^{2} b^{2}+b^{4}}+\frac {2 i a^{2} C x}{a^{4}+2 a^{2} b^{2}+b^{4}}-\frac {2 i C \,b^{2} x}{a^{4}+2 a^{2} b^{2}+b^{4}}-\frac {4 i a b B c}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}+\frac {2 i a^{2} C c}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}-\frac {2 i C \,b^{2} c}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}-\frac {2 i b^{2} B}{\left (-i a +b \right ) d \left (i a +b \right )^{2} \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+i a \,{\mathrm e}^{2 i \left (d x +c \right )}-b +i a \right )}+\frac {2 i b C a}{\left (-i a +b \right ) d \left (i a +b \right )^{2} \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+i a \,{\mathrm e}^{2 i \left (d x +c \right )}-b +i a \right )}+\frac {2 a b \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-\frac {i b +a}{i b -a}\right ) B}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}-\frac {a^{2} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-\frac {i b +a}{i b -a}\right ) C}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}+\frac {\ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-\frac {i b +a}{i b -a}\right ) C \,b^{2}}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}\) \(482\)

[In]

int(cot(d*x+c)*(B*tan(d*x+c)+C*tan(d*x+c)^2)/(a+b*tan(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(1/(a^2+b^2)^2*(1/2*(-2*B*a*b+C*a^2-C*b^2)*ln(1+tan(d*x+c)^2)+(B*a^2-B*b^2+2*C*a*b)*arctan(tan(d*x+c)))-(B
*b-C*a)/(a^2+b^2)/(a+b*tan(d*x+c))+(2*B*a*b-C*a^2+C*b^2)/(a^2+b^2)^2*ln(a+b*tan(d*x+c)))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 222, normalized size of antiderivative = 2.00 \[ \int \frac {\cot (c+d x) \left (B \tan (c+d x)+C \tan ^2(c+d x)\right )}{(a+b \tan (c+d x))^2} \, dx=\frac {2 \, C a b^{2} - 2 \, B b^{3} + 2 \, {\left (B a^{3} + 2 \, C a^{2} b - B a b^{2}\right )} d x - {\left (C a^{3} - 2 \, B a^{2} b - C a b^{2} + {\left (C a^{2} b - 2 \, B a b^{2} - C b^{3}\right )} \tan \left (d x + c\right )\right )} \log \left (\frac {b^{2} \tan \left (d x + c\right )^{2} + 2 \, a b \tan \left (d x + c\right ) + a^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) - 2 \, {\left (C a^{2} b - B a b^{2} - {\left (B a^{2} b + 2 \, C a b^{2} - B b^{3}\right )} d x\right )} \tan \left (d x + c\right )}{2 \, {\left ({\left (a^{4} b + 2 \, a^{2} b^{3} + b^{5}\right )} d \tan \left (d x + c\right ) + {\left (a^{5} + 2 \, a^{3} b^{2} + a b^{4}\right )} d\right )}} \]

[In]

integrate(cot(d*x+c)*(B*tan(d*x+c)+C*tan(d*x+c)^2)/(a+b*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

1/2*(2*C*a*b^2 - 2*B*b^3 + 2*(B*a^3 + 2*C*a^2*b - B*a*b^2)*d*x - (C*a^3 - 2*B*a^2*b - C*a*b^2 + (C*a^2*b - 2*B
*a*b^2 - C*b^3)*tan(d*x + c))*log((b^2*tan(d*x + c)^2 + 2*a*b*tan(d*x + c) + a^2)/(tan(d*x + c)^2 + 1)) - 2*(C
*a^2*b - B*a*b^2 - (B*a^2*b + 2*C*a*b^2 - B*b^3)*d*x)*tan(d*x + c))/((a^4*b + 2*a^2*b^3 + b^5)*d*tan(d*x + c)
+ (a^5 + 2*a^3*b^2 + a*b^4)*d)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.07 (sec) , antiderivative size = 2895, normalized size of antiderivative = 26.08 \[ \int \frac {\cot (c+d x) \left (B \tan (c+d x)+C \tan ^2(c+d x)\right )}{(a+b \tan (c+d x))^2} \, dx=\text {Too large to display} \]

[In]

integrate(cot(d*x+c)*(B*tan(d*x+c)+C*tan(d*x+c)**2)/(a+b*tan(d*x+c))**2,x)

[Out]

Piecewise((zoo*x*(B*tan(c) + C*tan(c)**2)*cot(c)/tan(c)**2, Eq(a, 0) & Eq(b, 0) & Eq(d, 0)), ((B*x + C*log(tan
(c + d*x)**2 + 1)/(2*d))/a**2, Eq(b, 0)), (-B*d*x*tan(c + d*x)**2/(4*b**2*d*tan(c + d*x)**2 - 8*I*b**2*d*tan(c
 + d*x) - 4*b**2*d) + 2*I*B*d*x*tan(c + d*x)/(4*b**2*d*tan(c + d*x)**2 - 8*I*b**2*d*tan(c + d*x) - 4*b**2*d) +
 B*d*x/(4*b**2*d*tan(c + d*x)**2 - 8*I*b**2*d*tan(c + d*x) - 4*b**2*d) - B*tan(c + d*x)/(4*b**2*d*tan(c + d*x)
**2 - 8*I*b**2*d*tan(c + d*x) - 4*b**2*d) + 2*I*B/(4*b**2*d*tan(c + d*x)**2 - 8*I*b**2*d*tan(c + d*x) - 4*b**2
*d) + I*C*d*x*tan(c + d*x)**2/(4*b**2*d*tan(c + d*x)**2 - 8*I*b**2*d*tan(c + d*x) - 4*b**2*d) + 2*C*d*x*tan(c
+ d*x)/(4*b**2*d*tan(c + d*x)**2 - 8*I*b**2*d*tan(c + d*x) - 4*b**2*d) - I*C*d*x/(4*b**2*d*tan(c + d*x)**2 - 8
*I*b**2*d*tan(c + d*x) - 4*b**2*d) + I*C*tan(c + d*x)/(4*b**2*d*tan(c + d*x)**2 - 8*I*b**2*d*tan(c + d*x) - 4*
b**2*d), Eq(a, -I*b)), (-B*d*x*tan(c + d*x)**2/(4*b**2*d*tan(c + d*x)**2 + 8*I*b**2*d*tan(c + d*x) - 4*b**2*d)
 - 2*I*B*d*x*tan(c + d*x)/(4*b**2*d*tan(c + d*x)**2 + 8*I*b**2*d*tan(c + d*x) - 4*b**2*d) + B*d*x/(4*b**2*d*ta
n(c + d*x)**2 + 8*I*b**2*d*tan(c + d*x) - 4*b**2*d) - B*tan(c + d*x)/(4*b**2*d*tan(c + d*x)**2 + 8*I*b**2*d*ta
n(c + d*x) - 4*b**2*d) - 2*I*B/(4*b**2*d*tan(c + d*x)**2 + 8*I*b**2*d*tan(c + d*x) - 4*b**2*d) - I*C*d*x*tan(c
 + d*x)**2/(4*b**2*d*tan(c + d*x)**2 + 8*I*b**2*d*tan(c + d*x) - 4*b**2*d) + 2*C*d*x*tan(c + d*x)/(4*b**2*d*ta
n(c + d*x)**2 + 8*I*b**2*d*tan(c + d*x) - 4*b**2*d) + I*C*d*x/(4*b**2*d*tan(c + d*x)**2 + 8*I*b**2*d*tan(c + d
*x) - 4*b**2*d) - I*C*tan(c + d*x)/(4*b**2*d*tan(c + d*x)**2 + 8*I*b**2*d*tan(c + d*x) - 4*b**2*d), Eq(a, I*b)
), (x*(B*tan(c) + C*tan(c)**2)*cot(c)/(a + b*tan(c))**2, Eq(d, 0)), (2*B*a**3*d*x/(2*a**5*d + 2*a**4*b*d*tan(c
 + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x)) + 2*B*a**2*b*d*x*ta
n(c + d*x)/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b
**5*d*tan(c + d*x)) + 4*B*a**2*b*log(a/b + tan(c + d*x))/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d +
 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x)) - 2*B*a**2*b*log(tan(c + d*x)**2 + 1)/(2*a**
5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x
)) - 2*B*a**2*b/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d
+ 2*b**5*d*tan(c + d*x)) - 2*B*a*b**2*d*x/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*
tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x)) + 4*B*a*b**2*log(a/b + tan(c + d*x))*tan(c + d*x)/(2*a**5*d
 + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x))
- 2*B*a*b**2*log(tan(c + d*x)**2 + 1)*tan(c + d*x)/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**
2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x)) - 2*B*b**3*d*x*tan(c + d*x)/(2*a**5*d + 2*a**4*b*d
*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x)) - 2*B*b**3/(2
*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c +
 d*x)) - 2*C*a**3*log(a/b + tan(c + d*x))/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*
tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x)) + C*a**3*log(tan(c + d*x)**2 + 1)/(2*a**5*d + 2*a**4*b*d*ta
n(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x)) + 2*C*a**3/(2*a*
*5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*
x)) + 4*C*a**2*b*d*x/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b*
*4*d + 2*b**5*d*tan(c + d*x)) - 2*C*a**2*b*log(a/b + tan(c + d*x))*tan(c + d*x)/(2*a**5*d + 2*a**4*b*d*tan(c +
 d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x)) + C*a**2*b*log(tan(c
+ d*x)**2 + 1)*tan(c + d*x)/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) +
 2*a*b**4*d + 2*b**5*d*tan(c + d*x)) + 4*C*a*b**2*d*x*tan(c + d*x)/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**
3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x)) + 2*C*a*b**2*log(a/b + tan(c + d*x
))/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*ta
n(c + d*x)) - C*a*b**2*log(tan(c + d*x)**2 + 1)/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b
**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x)) + 2*C*a*b**2/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*
a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x)) + 2*C*b**3*log(a/b + tan(c + d*
x))*tan(c + d*x)/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) + 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d
 + 2*b**5*d*tan(c + d*x)) - C*b**3*log(tan(c + d*x)**2 + 1)*tan(c + d*x)/(2*a**5*d + 2*a**4*b*d*tan(c + d*x) +
 4*a**3*b**2*d + 4*a**2*b**3*d*tan(c + d*x) + 2*a*b**4*d + 2*b**5*d*tan(c + d*x)), True))

Maxima [A] (verification not implemented)

none

Time = 0.37 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.59 \[ \int \frac {\cot (c+d x) \left (B \tan (c+d x)+C \tan ^2(c+d x)\right )}{(a+b \tan (c+d x))^2} \, dx=\frac {\frac {2 \, {\left (B a^{2} + 2 \, C a b - B b^{2}\right )} {\left (d x + c\right )}}{a^{4} + 2 \, a^{2} b^{2} + b^{4}} - \frac {2 \, {\left (C a^{2} - 2 \, B a b - C b^{2}\right )} \log \left (b \tan \left (d x + c\right ) + a\right )}{a^{4} + 2 \, a^{2} b^{2} + b^{4}} + \frac {{\left (C a^{2} - 2 \, B a b - C b^{2}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{4} + 2 \, a^{2} b^{2} + b^{4}} + \frac {2 \, {\left (C a - B b\right )}}{a^{3} + a b^{2} + {\left (a^{2} b + b^{3}\right )} \tan \left (d x + c\right )}}{2 \, d} \]

[In]

integrate(cot(d*x+c)*(B*tan(d*x+c)+C*tan(d*x+c)^2)/(a+b*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

1/2*(2*(B*a^2 + 2*C*a*b - B*b^2)*(d*x + c)/(a^4 + 2*a^2*b^2 + b^4) - 2*(C*a^2 - 2*B*a*b - C*b^2)*log(b*tan(d*x
 + c) + a)/(a^4 + 2*a^2*b^2 + b^4) + (C*a^2 - 2*B*a*b - C*b^2)*log(tan(d*x + c)^2 + 1)/(a^4 + 2*a^2*b^2 + b^4)
 + 2*(C*a - B*b)/(a^3 + a*b^2 + (a^2*b + b^3)*tan(d*x + c)))/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 234 vs. \(2 (111) = 222\).

Time = 0.87 (sec) , antiderivative size = 234, normalized size of antiderivative = 2.11 \[ \int \frac {\cot (c+d x) \left (B \tan (c+d x)+C \tan ^2(c+d x)\right )}{(a+b \tan (c+d x))^2} \, dx=\frac {\frac {2 \, {\left (B a^{2} + 2 \, C a b - B b^{2}\right )} {\left (d x + c\right )}}{a^{4} + 2 \, a^{2} b^{2} + b^{4}} + \frac {{\left (C a^{2} - 2 \, B a b - C b^{2}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{4} + 2 \, a^{2} b^{2} + b^{4}} - \frac {2 \, {\left (C a^{2} b - 2 \, B a b^{2} - C b^{3}\right )} \log \left ({\left | b \tan \left (d x + c\right ) + a \right |}\right )}{a^{4} b + 2 \, a^{2} b^{3} + b^{5}} + \frac {2 \, {\left (C a^{2} b \tan \left (d x + c\right ) - 2 \, B a b^{2} \tan \left (d x + c\right ) - C b^{3} \tan \left (d x + c\right ) + 2 \, C a^{3} - 3 \, B a^{2} b - B b^{3}\right )}}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} {\left (b \tan \left (d x + c\right ) + a\right )}}}{2 \, d} \]

[In]

integrate(cot(d*x+c)*(B*tan(d*x+c)+C*tan(d*x+c)^2)/(a+b*tan(d*x+c))^2,x, algorithm="giac")

[Out]

1/2*(2*(B*a^2 + 2*C*a*b - B*b^2)*(d*x + c)/(a^4 + 2*a^2*b^2 + b^4) + (C*a^2 - 2*B*a*b - C*b^2)*log(tan(d*x + c
)^2 + 1)/(a^4 + 2*a^2*b^2 + b^4) - 2*(C*a^2*b - 2*B*a*b^2 - C*b^3)*log(abs(b*tan(d*x + c) + a))/(a^4*b + 2*a^2
*b^3 + b^5) + 2*(C*a^2*b*tan(d*x + c) - 2*B*a*b^2*tan(d*x + c) - C*b^3*tan(d*x + c) + 2*C*a^3 - 3*B*a^2*b - B*
b^3)/((a^4 + 2*a^2*b^2 + b^4)*(b*tan(d*x + c) + a)))/d

Mupad [B] (verification not implemented)

Time = 8.62 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.38 \[ \int \frac {\cot (c+d x) \left (B \tan (c+d x)+C \tan ^2(c+d x)\right )}{(a+b \tan (c+d x))^2} \, dx=\frac {\ln \left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )\,\left (-C\,a^2+2\,B\,a\,b+C\,b^2\right )}{d\,{\left (a^2+b^2\right )}^2}-\frac {B\,b-C\,a}{d\,\left (a^2+b^2\right )\,\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )\,\left (C+B\,1{}\mathrm {i}\right )}{2\,d\,\left (-a^2+a\,b\,2{}\mathrm {i}+b^2\right )}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )-\mathrm {i}\right )\,\left (B+C\,1{}\mathrm {i}\right )}{2\,d\,\left (-a^2\,1{}\mathrm {i}+2\,a\,b+b^2\,1{}\mathrm {i}\right )} \]

[In]

int((cot(c + d*x)*(B*tan(c + d*x) + C*tan(c + d*x)^2))/(a + b*tan(c + d*x))^2,x)

[Out]

(log(a + b*tan(c + d*x))*(C*b^2 - C*a^2 + 2*B*a*b))/(d*(a^2 + b^2)^2) - (B*b - C*a)/(d*(a^2 + b^2)*(a + b*tan(
c + d*x))) - (log(tan(c + d*x) + 1i)*(B*1i + C))/(2*d*(a*b*2i - a^2 + b^2)) - (log(tan(c + d*x) - 1i)*(B + C*1
i))/(2*d*(2*a*b - a^2*1i + b^2*1i))